Surhat

Healthy and General

Machine learning approach towards explaining water quality

8 min read
  • Astaraie-Imani, M., Kapelan, Z., Fu, G. & Butler, D. Assessing the combined effects of urbanisation and climate change on the river water quality in an integrated urban wastewater system in the UK. J. Environ. Manage. 112, 1–9 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Miller, J. D. & Hutchins, M. The impacts of urbanisation and climate change on urban flooding and urban water quality: A review of the evidence concerning the United Kingdom. J. Hydrol. Regional Stud. 12, 345–362 (2017).

    Article 

    Google Scholar 

  • Miller, J. D. et al. Assessing the impact of urbanization on storm runoff in a peri-urban catchment using historical change in impervious cover. J. Hydrol. 515, 59–70 (2014).

    ADS 
    Article 

    Google Scholar 

  • Shields, C. A. et al. Streamflow distribution of non-point source nitrogen export from urban-rural catchments in the Chesapeake bay watershed. Water Resour. Res. 44 (2008).

  • Huang, J., Yin, H., Chapra, S. C. & Zhou, Q. Modelling dissolved oxygen depression in an urban river in China. Water 9, 520 (2017).

    Article 
    CAS 

    Google Scholar 

  • Simmons, D. L. & Reynolds, R. J. Effects of urbanization on base flow of selected south-shore streams, Long Island, New York 1. JAWRA J. Am. Water Resour. Assoc. 18, 797–805 (1982).

    ADS 
    Article 

    Google Scholar 

  • Johnson, A. C. et al. The British river of the future: How climate change and human activity might affect two contrasting river ecosystems in England. Sci. Total Environ. 407, 4787–4798 (2009).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Lokhande, S. & Tare, V. Spatio-temporal trends in the flow and water quality: Response of river Yamuna to urbanization. Environ. Monit. Assess. 193, 1–14 (2021).

    Article 
    CAS 

    Google Scholar 

  • Mallin, M. A., Johnson, V. L. & Ensign, S. H. Comparative impacts of stormwater runoff on water quality of an urban, a suburban, and a rural stream. Environ. Monit. Assess. 159, 475–491 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Yang, Y.-Y. & Toor, G. S. Stormwater runoff driven phosphorus transport in an urban residential catchment: Implications for protecting water quality in Urban Watersheds. Sci. Rep. 8, 1–10 (2018).

    Google Scholar 

  • Gaafar, M., Mahmoud, S. H., Gan, T. Y. & Davies, E. G. A practical gis-based hazard assessment framework for water quality in stormwater systems. J. Clean. Prod. 245, 118855 (2020).

    CAS 
    Article 

    Google Scholar 

  • Stenstrom, M. K. & Kayhanian, M. First flush phenomenon characterization (Tech. Rep, California Department of Transportation Division of Environmental Analysis, 2005).

  • Peter, K. T. et al. More than a first flush: Urban creek storm hydrographs demonstrate broad contaminant pollutographs. Environ. Sci. Technol. 54, 6152–6165 (2020).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Peters, P. E. & Zitomer, D. H. Current and future approaches to wet weather flow management: A review. Water Environ. Res. 93, 1179–1193 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Lund, A. et al. Long term impacts of combined sewer overflow remediation on water quality and population dynamics of culex Quinquefasciatus, the main urban west Nile virus vector in Atlanta, GA. Environ. Res. 129, 20–26 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Crocetti, P. et al. Catchment-wide validated assessment of combined sewer overflows (csos) in a mediterranean coastal area and possible disinfection methods to mitigate microbial contamination. Environ. Res.196 (2021).

  • Dittmer, U., Bachmann-Machnik, A. & Launay, M. A. Impact of combined sewer systems on the quality of urban streams: Frequency and duration of elevated micropollutant concentrations. Water12 (2020).

  • Conway, T. M. Impervious surface as an indicator of ph and specific conductance in the urbanizing coastal zone of New Jersey, USA. J. Environ. Manage. 85, 308–316 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Rose, S. The effects of urbanization on the hydrochemistry of base flow within the Chattahoochee river Basin (Georgia, USA). J. Hydrol. 341, 42–54 (2007).

    ADS 
    Article 

    Google Scholar 

  • Peters, N. E. Effects of urbanization on stream water quality in the city of Atlanta, Georgia, USA. Hydrol. Processes Int. J. 23, 2860–2878 (2009).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Moore, J., Bird, D. L., Dobbis, S. K. & Woodward, G. Nonpoint source contributions drive elevated major ion and dissolved inorganic carbon concentrations in urban watersheds. Environ. Sci. Technol. Lett. 4, 198–204 (2017).

    CAS 
    Article 

    Google Scholar 

  • Cañedo-Argüelles, M. et al. Saving freshwater from salts. Science 351, 914–916 (2016).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • Billen, G., Garnier, J., Ficht, A. & Cun, C. Modeling the response of water quality in the Seine river estuary to human activity in its watershed over the last 50 years. Estuaries 24, 977–993 (2001).

    CAS 
    Article 

    Google Scholar 

  • Abbott, B. W. et al. Trends and seasonality of river nutrients in agricultural catchments: 18 years of weekly citizen science in France. Sci. Total Environ. 624, 845–858 (2018).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Duan, W. et al. Identification of long-term trends and seasonality in high-frequency water quality data from the Yangtze river basin, China. PLoS One 13, e0188889 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Arroita, M., Elosegi, A. & Hall, R. O. Jr. Twenty years of daily metabolism show riverine recovery following sewage abatement. Limnol. Oceanogr. 64, S77–S92 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Schmidt, L., Heße, F., Attinger, S. & Kumar, R. Challenges in applying machine learning models for hydrological inference: A case study for flooding events across Germany. Water Resour. Res. 56, e2019WR025924 (2020).

    ADS 
    Article 

    Google Scholar 

  • Hammond, P., Suttie, M., Lewis, V. T., Smith, A. P. & Singer, A. C. Detection of untreated sewage discharges to watercourses using machine learning. NPJ Clean Water 4, 1–10 (2021).

    Article 
    CAS 

    Google Scholar 

  • Liu, L. et al. Towards the comprehensive water quality control in lake Taihu: Correlating chlorphyll a and water quality parameters with generalized additive model. Sci. Total Environ. 705, 135993 (2020).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Motevalli, A. et al. Inverse method using boosted regression tree and k-nearest neighbor to quantify effects of point and non-point source nitrate pollution in groundwater. J. Clean. Prod. 228, 1248–1263 (2019).

    CAS 
    Article 

    Google Scholar 

  • Friedman, J., Hastie, T. & Tibshirani, R. The elements of statistical learning, vol. 1 (Springer series in statistics New York, 2001).

  • Shwartz-Ziv, R. & Armon, A. Tabular data: Deep learning is not all you need. Inf. Fusion 81, 84–90 (2022).

    Article 

    Google Scholar 

  • Roscher, R., Bohn, B., Duarte, M. F. & Garcke, J. Explainable machine learning for scientific insights and discoveries. IEEE Access 8, 42200–42216 (2020).

    Article 

    Google Scholar 

  • Yang, Y. & Chui, T. F. M. Modeling and interpreting hydrological responses of sustainable urban drainage systems with explainable machine learning methods. Hydrol. Earth Syst. Sci. Discussions 1–41 (2020).

  • Jiang, S., Zheng, Y., Wang, C. & Babovic, V. Uncovering flooding mechanisms across the contiguous united states through interpretive deep learning on representative catchments. Water Resour. Res. e2021WR030185 (2022).

  • Lundberg, S. M. & Lee, S.-I. A unified approach to interpreting model predictions. In Advances in neural information processing systems, 4765–4774 (2017).

  • Lundberg, S. M. et al. From local explanations to global understanding with explainable AI for trees. Nat. Mach. Intell. 2, 2522–5839 (2020).

    Article 

    Google Scholar 

  • Parkinson, A. WWF: The State of England’s Chalk Streams (2014).

  • WFD. “DIRECTIVE 2000/60/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 23 October 2000 establishing a framework for Community action in the field of water policy” or, in short, the EU Water Framework Directive. Official Journal of the European CommunitiesL 327, 1–72 (2000).

  • Visser, A., Beevers, L. & Patidar, S. The impact of climate change on hydroecological response in chalk streams. Water 11, 596 (2019).

    Article 

    Google Scholar 

  • Dąbrowska, J., Bawiec, A., Pawęska, K., Kamińska, J. & Stodolak, R. Assessing the impact of wastewater effluent diversion on water quality. Polish J. Environ. Stud.26 (2017).

  • Issa, H. M. & Alshatteri, A. H. Impacts of wastewater discharge from Kalar city on Diyala-Sirwan river water quality, Iraq: Pollution evaluation, health risks of heavy metals contamination. Appl. Water Sci. 11, 1–13 (2021).

    Article 
    CAS 

    Google Scholar 

  • Jordan, R. C., Gray, S. A., Howe, D. V., Brooks, W. R. & Ehrenfeld, J. G. Knowledge gain and behavioral change in citizen-science programs. Conserv. Biol. 25, 1148–1154 (2011).

    PubMed 
    Article 

    Google Scholar 

  • Bonney, R., Phillips, T. B., Ballard, H. L. & Enck, J. W. Can citizen science enhance public understanding of science? Public Underst. Sci. 25, 2–16 (2016).

    PubMed 
    Article 

    Google Scholar 

  • Pike, A. et al. Forecasting river temperatures in real time using a stochastic dynamics approach. Water Resources Research 49, 5168–5182 (2013).

  • NERC Centre for Ecology and Hydrology. National river flow archive 2020: National river flow archive. http://nrfa.ceh.ac.uk (2020). (Accessed 27 October 2020).

  • Schäfer, B., Heppell, C. M., Rhys, H. & Beck, C. Fluctuations of water quality time series in rivers follow superstatistics. iScience24 (2021). https://doi.org/10.1016/j.isci.2021.102881https://www.cell.com/iscience/pdf/S2589-0042(21)00849-X.pdf.

  • Kreinovich, V., Nguyen, H. T. & Ouncharoen, R. How to estimate forecasting quality: A system-motivated derivation of symmetric mean absolute percentage error (smape) and other similar characteristics (2014).

  • Guo, D. et al. Key factors affecting temporal variability in stream water quality. Water Resour. Res. 55, 112–129 (2019).

  • Keller, V. D. J., Williams, R. J., Lofthouse, C. & Johnson, A. C. Worldwide estimation of river concentrations of any chemical originating from sewage-treatment plants using dilution factors. Environ. Toxicol. Chem. 33, 447–452 (2014).

  • ECHA. Guidance on information requirements and chemical safety assessment: Chapter r.16: Environmental exposure assessment. (2016).

  • Link, M., von der Ohe, P. C., Voss, K. & Schafer, R. B. Comparison of dilution factors for German wastewater treatment plant effluents in receiving streams to the fixed dilution factor from chemical risk assessment. Sci. Total Environ. 598, 805–813 (2017).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Zhu, S. L. & Piotrowski, A. P. River/stream water temperature forecasting using artificial intelligence models: a systematic review. Acta Geophysica 68, 1433–1442 (2020).

    ADS 
    Article 

    Google Scholar 

  • Hebert, C., Caissie, D., Satish, M. G. & El-Jabi, N. Modeling of hourly river water temperatures using artificial neural networks. Water Quality Res. J. Canada 49, 144–162 (2014).

  • Basic, T., Britton, J. R., Cove, R. J., Ibbotson, A. T. & Gregory, S. D. Roles of discharge and temperature in recruitment of a cold-water fish, the European grayling thymallus thymallus, near its southern range limit. Ecol. Freshwater Fish 27, 940–951 (2018).

  • Wilson, M. & Worrall, F. The heat recovery potential of ‘wastewater’: A national analysis of sewage effluent discharge temperatures. Environ. Sci. Water Res. Technol. 7, 1760–1777. https://doi.org/10.1039/D1EW00411E (2021).

    CAS 
    Article 

    Google Scholar 

  • Molnar, C. Interpretable Machine Learning (Lulu. com, 2020).

  • Wang, C., Wu, Q., Weimer, M. & Zhu, E. Flaml: A fast and lightweight automl library. Proc. Mach. Learn. Syst.3 (2021).

  • Slater, L. J. et al. Using R in hydrology: A review of recent developments and future directions. Hydrol. Earth Syst. Sci. 23, 2939–2963 (2019).

    ADS 
    Article 

    Google Scholar 

  • Kuhn, M. Building predictive models in R using the caret package. J. Stat. Softw. 28, 1–26 (2008).

    Article 

    Google Scholar 

  • McGrane, S. J. et al. During a winter of storms in a small UK catchment, hydrology and water quality responses follow a clear rural-urban gradient. J. Hydrol.545, 463–477 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Chan, K. S. et al. Low-cost electronic sensors for environmental research: Pitfalls and opportunities. Progress Phys. Geography-Earth Environ. 45, 305–338 (2021).

  • Munro, K. et al. Evaluation of combined sewer overflow impacts on short-term pharmaceutical and illicit drug occurrence in a heavily urbanised tidal river catchment (London, UK). Sci. Total Environ. 657, 1099–1111 (2019).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Bernal, S. et al. Wastewater treatment plant effluent inputs induce large biogeochemical changes during low flows in an intermittent stream but small changes in day-night patterns. Sci. Total Environ.714, 136733 (2020). https://www.ncbi.nlm.nih.gov/pubmed/31982751.

  • Marti, E., Aumatell, J., Gode, L., Poch, M. & Sabater, F. Nutrient retention efficiency in streams receiving inputs from wastewater treatment plants. J. Environ. Quality 33, 285–293 (2004).

  • Arnon, S., Avni, N. & Gafny, S. Nutrient uptake and macroinvertebrate community structure in a highly regulated Mediterranean stream receiving treated wastewater. Aquatic Sci. 77, 623–637 (2015).

    CAS 
    Article 

    Google Scholar 

  • OpenStreetMap contributors. OpenStreetMaps. https://www.openstreetmap.org/copyright (2022).

  • Waskom, M. L. Seaborn: Statistical data visualization. J. Open Source Softw. 6, 3021 (2021).

    ADS 
    Article 

    Google Scholar 

  • Servén, D. & Brummitt, C. pygam: generalized additive models in Python. Zenodo 10 (2018).

  • Ke, G. et al. Lightgbm: A highly efficient gradient boosting decision tree. Adv. Neural. Inf. Process. Syst. 30, 3146–3154 (2017).

    Google Scholar