Surhat

Healthy and General

Alignment between glioblastoma internal clock and

6 min read
  • Losada‐Pérez, M., Jarabo, P., Martín‐Castro, F. A. & Casas‐Tintó, S. Glioblastoma models in Drosophila melanogaster. In eLS eLS. John Wiley & Sons, Ltd: Chichester; https://doi.org/10.1002/9780470015902.a0022540.pub2 (2020).

  • Read, R. D., Cavenee, W. K., Furnari, F. B. & Thomas, J. B. A Drosophila model for EGFR-Ras and PI3K-dependent human glioma. PLoS Genet. 5, 1000374 (2009).

    Article 
    CAS 

    Google Scholar 

  • Mummudi, N. & Jalali, R. Palliative care and quality of life in neuro-oncology. F1000Prime Rep. 6, 71 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Posti, J. P. et al. Presenting symptoms of glioma in adults. Acta Neurol. Scand. 131, 88–93 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Koekkoek, J. A. F. et al. Symptoms and medication management in the end of life phase of high-grade glioma patients. J. Neurooncol. 120, 589–595 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Herting, C. J. et al. Tumour-associated macrophage-derived interleukin-1 mediates glioblastoma-associated cerebral oedema. Brain 142, 3834–3851 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Villa, C., Miquel, C., Mosses, D., Bernier, M. & Di Stefano, A. L. The 2016 World Health Organization classification of tumours of the central nervous system. Presse Med. 47, 187–200 (2018).

    Article 

    Google Scholar 

  • Portela, M. et al. Glioblastoma cells vampirize WNT from neurons and trigger a JNK/MMP signaling loop that enhances glioblastoma progression and neurodegeneration. PLoS Biol. 17, 3000545 (2019).

    Article 
    CAS 

    Google Scholar 

  • Martín-Peña, A. et al. Age-independent synaptogenesis by phosphoinositide 3 kinase. J. Neurosci. 26, 10199–10208 (2006).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Jordán-Álvarez, S., Santana, E., Casas-Tintó, S., Acebes, Á. & Ferrús, A. The equilibrium between antagonistic signaling pathways determines the number of synapses in Drosophila. PLoS ONE 12, 0184238 (2017).

    Article 
    CAS 

    Google Scholar 

  • Knafo, S. & Esteban, J. A. PTEN: local and global modulation of neuronal function in health and disease. Trends Neurosci. 40, 83–91 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Cuesto, G. et al. GSK3β inhibition promotes synaptogenesis in drosophila and mammalian neurons. PLoS ONE 10, 0118475 (2015).

    Article 
    CAS 

    Google Scholar 

  • Jarabo, P., de Pablo, C., Herranz, H., Martín, F. A. & Casas-Tintó, S. Insulin signaling mediates neurodegeneration in glioma. Life Sci. Alliance 4, 202000693 (2021).

    Article 
    CAS 

    Google Scholar 

  • Arnés, M., Romero, N., Casas-Tintó, S., Acebes, Á. & Ferrús, A. PI3K activation prevents Aβ42-induced synapse loss and favors insoluble amyloid deposit formation. Mol. Biol. Cell 31, 244–260 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Mansilla, A. et al. Molecular mechanisms that change synapse number. J. Neurogenet. 32, 155–170 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Roenneberg, T. & Merrow, M. The circadian clock and human health. Curr. Biol. 26, R432–R443 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Jarabo, P. & Martin, F. A. Neurogenetics of Drosophila circadian clock: expect the unexpected. J. Neurogenet. 31, 250–265 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Allada, R. & Chung, B. Y. Circadian organization of behavior and physiology in Drosophila. Annu. Rev. Physiol. 72, 605–624 (2009).

    Article 
    CAS 

    Google Scholar 

  • Khan, S. et al. Health risks associated with genetic alterations in internal clock system by external factors. Int. J. Biol. Sci. 14, 791–798 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • McNeill, E. M. et al. The conserved microRNA miR-34 regulates synaptogenesis via coordination of distinct mechanisms in presynaptic and postsynaptic cells. Nat. Commun. 11, 1092 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Gorostiza, E. A., Depetris-Chauvin, A., Frenkel, L., Pírez, N. & Ceriani, M. F. Circadian pacemaker neurons change synaptic contacts across the day. Curr. Biol. 24, 2161–2167 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Duhart, J. M. et al. Circadian structural plasticity drives remodeling of e cell output. Curr. Biol. 30, 5040–5048.e5 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Herrero, A. et al. Coupling neuropeptide levels to structural plasticity in Drosophila clock neurons. Curr. Biol. 30, 3154–3166.e4 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Renn, S. C. P., Park, J. H., Rosbash, M., Hall, J. C. & Taghert, P. H. A pdf neuropeptide gene mutation and ablation of PDF neurons each cause severe abnormalities of behavioral circadian rhythms in Drosophila. Cell 99, 791–802 (1999).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Brandao, M., Simon, T., Critchley, G. & Giamas, G. Astrocytes, the rising stars of the glioblastoma microenvironment. Glia 67, 779–790 (2019).

    PubMed 
    Article 

    Google Scholar 

  • Matias, D. et al. Microglia/astrocytes–glioblastoma crosstalk: crucial molecular mechanisms and microenvironmental factors. Front. Cell. Neurosci. 12, 235 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Freeman, M. R. Drosophila central nervous system glia. Cold Spring Harb. Perspect. Biol. 7, 020552 (2015).

    Article 

    Google Scholar 

  • Mandal, A. S., Romero-Garcia, R., Hart, M. G. & Suckling, J. Genetic, cellular, and connectomic characterization of the brain regions commonly plagued by glioma. Brain 143, 3294–3307 (2021).

    Article 

    Google Scholar 

  • Esmaeili, M., Stensjøen, A. L., Berntsen, E. M., Solheim, O. & Reinertsen, I. The direction of tumour growth in glioblastoma patients. Sci. Rep. 8, 1–6 (2018).

    CAS 
    Article 

    Google Scholar 

  • Portela, M. et al. Oncogenic dependence of glioma cells on kish/TMEM167A regulation of vesicular trafficking. Glia 67, 404–417 (2019).

    PubMed 
    Article 

    Google Scholar 

  • Chi, K. C., Tsai, W. C., Wu, C. L., Lin, T. Y. & Hueng, D. Y. An adult drosophila glioma model for studying pathometabolic pathways of gliomagenesis. Mol. Neurobiol. 56, 4589–4599 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Vigneswaran, K. et al. YAP/TAZ transcriptional coactivators create therapeutic vulnerability to verteporfin in EGFR-mutant glioblastoma. Clin. Cancer Res. 27, 1553–1569 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Sato, S., Parr, E. B., Devlin, B. L., Hawley, J. A. & Sassone-Corsi, P. Human metabolomics reveal daily variations under nutritional challenges specific to serum and skeletal muscle. Mol. Metab. 16, 1–11 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Cortés-Hernández, L. E. et al. Do malignant cells sleep at night? Genome Biol. 21, 276 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Kinouchi, K. & Sassone-Corsi, P. Metabolic rivalry: circadian homeostasis and tumorigenesis. Nat. Rev. Cancer 20, 645–661 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Masri, S. & Sassone-Corsi, P. The emerging link between cancer, metabolism, and circadian rhythms. Nat. Med. 24, 1795–1803 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Moreno-Smith, M. et al. Restoration of the molecular clock is tumor suppressive in neuroblastoma. Nat. Commun. 12, 4006 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Madden, M. H. et al. Circadian pathway genes in relation to glioma risk and outcome. Cancer Causes Control 25, 25–32 (2014).

    PubMed 
    Article 

    Google Scholar 

  • Zhang, C., Xu, J., Chen, L. & Lin, X. Multi-omics landscape of circadian rhythm pathway alterations in Glioma. Bioengineered 12, 3294–3308 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Fox, S. W., Lyon, D. & Farace, E. Symptom clusters in patients with high-grade glioma: clinical scholarship. J. Nurs. Scholarsh. 39, 61–67 (2007).

    PubMed 
    Article 

    Google Scholar 

  • Walker, W. H. & Borniger, J. C. Molecular mechanisms of cancer-induced sleep disruption. Int. J. Mol. Sci. 20, 2780 (2019).

    CAS 
    PubMed Central 
    Article 

    Google Scholar 

  • Armstrong, T. S. et al. Sleep-wake disturbance in patients with brain tumors. Neuro. Oncol. 19, 323–335 (2017).

    PubMed 

    Google Scholar 

  • Venkatesh, H. S. et al. Electrical and synaptic integration of glioma into neural circuits. Nature 573, 539–545 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Venkataramani, V. et al. Glutamatergic synaptic input to glioma cells drives brain tumour progression. Nature 573, 532–538 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Portela, M., Mitchell, T. & Casas-Tintó, S. Cell-to-cell communication mediates glioblastoma progression in Drosophila. Biol. Open 9, 053405 (2020).

    Google Scholar 

  • Koronowski, K. B. & Sassone-Corsi, P. Communicating clocks shape circadian homeostasis. Science 371, 0951 (2021).

    Article 
    CAS 

    Google Scholar 

  • Patel, S. A. & Kondratov, R. V. Clock at the core of cancer development. Biology 10, 1–16 (2021).

    CAS 
    Article 

    Google Scholar 

  • Sulli, G., Lam, M. T. Y. & Panda, S. Interplay between circadian clock and cancer: new frontiers for cancer treatment. Trends Cancer 5, 475–494 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • De Nobrega, A. K. & Lyons, L. C. Aging and the clock: perspective from flies to humans. Eur. J. Neurosci. 51, 454–481 (2020).

    PubMed 
    Article 

    Google Scholar 

  • Majercak, J., Sidote, D., Hardin, P. E. & Edery, I. How a circadian clock adapts to seasonal decreases in temperature and day length. Neuron 24, 219–230 (1999).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Beckwith, E. J. & French, A. S. Sleep in Drosophila and its context. Front Physiol. 10, 1167 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Parker, T. M. et al. Cell competition in intratumoral and tumor microenvironment interactions. EMBO J. 40, 107271 (2021).

    Article 
    CAS 

    Google Scholar 

  • Costa-Rodrigues, C., Couceiro, J. & Moreno, E. Cell competition from development to neurodegeneration. DMM 14, 048926 (2021).

    Google Scholar 

  • Lee, B. P. & Jones, B. W. Transcriptional regulation of the Drosophila glial gene repo. Mech. Dev. 122, 849–862 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Casas-Tintó, S., Arnés, M. & Ferrús, A. Drosophila enhancer-Gal4 lines show ectopic expression during development. R. Soc. Open Sci. 4, 170039 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Brand, A. H. & Perrimon, N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118, 401–415 (1993).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Lai, S. L. & Lee, T. Genetic mosaic with dual binary transcriptional systems in Drosophila. Nat. Neurosci. 9, 703–709 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • McGuire, S. E., Le, P. T., Osborn, A. J., Matsumoto, K. & Davis, R. L. Spatiotemporal rescue of memory dysfunction in drosophila. Science 302, 1765–1768 (2003).

    CAS 
    PubMed 
    Article 

    Google Scholar